Bounds on graph eigenvalues II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on graph eigenvalues II

We prove three results about the spectral radius μ (G) of a graph G : (a) Let Tr (n) be the r-partite Turán graph of order n. If G is a Kr+1-free graph of order n, then μ (G) < μ (Tr (n)) unless G = Tr (n) . (b) For most irregular graphs G of order n and size m, μ (G)− 2m/n > 1/ (2m+ 2n) . (c) Let 0 ≤ k ≤ l. If G is a graph of order n with no K2 +Kk+1 and no K2,l+1, then μ (G) ≤ min {

متن کامل

Bounds on graph eigenvalues I

We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then

متن کامل

Bounds for Laplacian Graph Eigenvalues

Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.

متن کامل

Bounds for Eigenvalues of a Graph

New lower bounds for eigenvalues of a simple graph are derived. Upper and lower bounds for eigenvalues of bipartite graphs are presented in terms of traces and degree of vertices. Finally a non-trivial lower bound for the algebraic connectivity of a connected graph is given.

متن کامل

A ug 2 00 6 Bounds on graph eigenvalues

We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n ≥ 2, maximum degree ∆, and girth at least 5, then μ (G) ≤ min {

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.07.010